Lecture 25

In this lecture, we'll use the orbit-stabilizer theorem to obtain a very nice equation, called the class equation for counting the # of elements in a group, which has far reaching applications.

Being in the same orbit is an equivalence relation
Let G be a group acting on a set X. Recall that
for
$$\alpha \in X$$
, $O_X = \{g \in G\}$. If $y \in X$ is also in
 O_X then $\exists g \in G$ set. $y = g \cdot x$.

Define a relation ~ on X by
$$x - y$$
 iff $y = g \cdot x$ for some $g \in G_1$, i.e., $y \in O_{x}$.

Proposition1:- The relation ~ on X defined above

1) Reflexive :-
$$x \sim x$$
. Choose $e \in G_1$. Then
 $e \cdot x = x = p \quad x \sim x$.

2) Symmetric :- If
$$x \sim y = v \quad y \sim x$$
.
If $x \sim y = p \quad y = g \cdot x$ for some $g \in G$.
Act both = ides by g^{-1} to get $g^{-1} \cdot y = g^{-1} \cdot (g \cdot x)$
 $= e \cdot x = x$

The good thing about equivalence relations is that the equivalence classes partitions the set. Recall that a equivalence class of an equivalence relation ~ is [x]= {y e X } x~y } So for the relation we defined on X, the equiv--alence class of x is just Ox. So, {Ox{x ex partitions the set X, i.e., ig Ox and Oy are two orbits then either $O_{\mathbf{x}} = O_{\mathbf{y}}$ or $O_{\mathbf{x}} \cap O_{\mathbf{y}} = \phi$

Remark : Notice that O_{∞} have the same properties as cosets of a subgroup. This is because the relation on G of being in the same coset is an equivalence relation and the equiv--alence classes are just cosets.

Since $\{0_X\}_{X \in X}$ posititions $X \implies \text{ If } y \in X$ is any element then there is one and only one element $z \in X$ so to $y \in O_z$.

$$[X] = \sum_{i=1}^{n} [O_{x_i}] \qquad (i)$$

$$\approx_{i \in X}$$

Note that 1) holds for any group G acting on

ony set X. We'll use this to our advantage by looking at a particular action.

Recall that a group G act on itself by conjugation
i.e., for
$$g,h \in G$$
, $g \cdot h = ghg^{-1}$.
We saw that for this action,
Stab(g) = C(g) $\forall g \in G$. \bigcirc

Definition :- Let G act on itself by conjugation. Then for g & G , Og to called the conjugacy class of g. So a conjugacy class is just another name for on orbit.

= {g?

So for the conjugation action, $\forall g \in Z(G)$, $O_g = \tilde{g}g\tilde{s}$. Moreover, we can retrace our steps in the above process, i.e., if $O_g = \tilde{s}g\tilde{s} = D$ $g \in Z(G_1)$. Thus we get

$$\frac{1}{2} \sum_{g \in \mathbb{Z}(G)} \frac{1}{2} = \frac{1}{2} \int g \in \mathbb{Z}(G).$$

Let's get back to eq. I for the conjugation

action. If G is finite them (since X=G here)
IGI =
$$\sum_{i=1}^{n} |O_{g_i}|$$

 $g_i \in G_i$

But all those $g_i \in G$ which are in Z(G), contribute only 1 element, g_i itself, so we can take 1Z(G)1 mony elements out to get

$$|G| = |Z(G)| + \sum_{j=1}^{k} |O_{j}| - 3$$

 $\partial_{j} \notin Z(G)$

Recall from the Orbit-Stabilizer theorem that is $|G_1 < \infty = D$ $|G| = |O_g|| = |G_0||$ So from (2), $|G_1| = |O_g|| = |G_0| = \frac{|G|}{|C(g)|}$

Thus, using this in equation 3 use get

$$|G| = |Z(G)| + \sum_{\substack{g \notin Z(G) \\ g \notin Z(G)}} \frac{|G|}{|C(g)|}$$

This is known as the class equation. An extra or--dinary thing about this is that even though we started us/ the conjugation action but the class equation holds for any finite group G, mesp--cetive of any action.

This is the power of group actions! Even though we start w/ a particular action, suited to our needs, the end result holds for only group and we get a very nice general result.