Lecture 25

In this lecture, we'll use the orbit-stabilizer theorem to obtain ^a very nice equation called the class equation for counting the of elements in a group, which has far reaching applications.

Being in the same orbit's on equivalence relation
Let G be a group acting on a set X. Recall that
for
$$
\alpha \in X
$$
, $O_x = \{g \cdot x \mid g \in G\}$. If $y \in X$ is also in
 O_x then $\exists g \in G$ s.t. $y = g \cdot x$.

Define a relation
$$
\sim
$$
 on X by
 $x-y$ iff $y=9 \cdot x$ for some $g \in G_1$, i.e., $y \in O_x$.

() proposition]: The relation ~ on X defined above

is an equivalence relation Proof Recall that for proving ^a relation to be an equivalence relation we need to check ³ things which we do below

1) Reflesive :-
$$
x \sim x
$$
. Choose $e \in G$. Then
 $e \cdot x = x = x \sim x \cdot$

2) Symmetric :- 1f x-y = 7 y-x.
\n1f x-y =7 y = 8 \cdot x for some
$$
ge G
$$
.
\n2g
\n3g
\n4h both sides by g⁻¹ to get $g^{-1} \cdot y = g^{-1}(g \cdot x)$
\n= e \cdot x = x

So
$$
x = g^{-1} \cdot y = 0
$$
 $y \sim x$

$$
\begin{array}{rcl}\n\hline\n\text{73} & \text{Transitive} & \text{if } x \sim y \text{ and } y \sim z = 0 \quad x \sim z. \\
\hline\n\text{14} & x \sim y = 0 \quad \text{19 e G s.t. } y = 9 \cdot x \\
\text{14} & x \sim y = 0 \quad \text{19 e G s.t. } z = 0 \cdot y\n\end{array}
$$

$$
s_{o} \quad Z = h \cdot (g \cdot x) = (hg) \cdot x
$$
 [by the definition
of a group action.]

D N 2 So re is an equivalence relation I

The good thing about equivalence relations is that the equivalence classes partitions the set. 'Recall that a equivalence class of an equivalence $relation$ ~ is $I \times 3 = \{ \forall \in \mathcal{X} \mid \mathbf{x} \sim \mathbf{y} \}$ So for the relation we defined on X, the equiv--alence class of x is just $\mathbb{O}_{\bm{x}}$. $\{S_0, \{0_\alpha\}_{\alpha \in X}$ partitions the set X, i.e i,j O_{χ} and O_{χ} are two orbits then either $O_{\chi} = O_{\chi}$ or $0_x \cap 0_y = \phi$

Remark : Notice that 0_{x} have the same properties as cosets of ^a subgroup This is because the relation on ^G of being in the same coset is an equivalence relations and the equiv--alence classes are just cosets.

Since $\{0x\}_{x\in X}$ partitions $X = 1$ f y $\in X$ is any element then there is one and only one element $z \in X$ soto $y \in O_z$.

So ig ^X is finite then

$$
|\mathbf{x}| = \sum_{i=1}^{n} |0_{x_i}|
$$

Note that 1 holds for any group G acting on

any set X . We'll use this to our advantage by looking at ^a particular action

ConjugacyclassesomdClassboquation

Recall that a group G act on itself by conjugation
\ni.e. for
$$
g,h \in G
$$
, $g\cdot h = ghg^{-1}$.
\nWe saw that for this action,
\nStab(g) = $C(g)$ $\forall g \in G$.

Definition :- Let G act on itself by conjugation. Then for g & G, Og is called the conjugacy $close$ of g. So ^a conjugacy class is just another name for an orbit

Suppose
$$
g \in Z(G)
$$
. let's see what the conjug-
\n- avg class of g is. By definition,
\n
$$
O_g = \begin{cases} h \cdot g \\ h \in G \end{cases}
$$
\n
$$
= \begin{cases} h_g h^{-1} \\ h \in G \end{cases}
$$
\n
$$
= \begin{cases} gh h^{-1} \\ h \in G \end{cases}
$$
\n[$as \ g \in Z(G)$]

 $= \frac{5}{2}9$

 S for the conjugation action, \forall g \in $Z(G)$, Og = $\{9\}$. Moreover, we can retrace our steps in the above process, i.e., if $0_g = \{g\}$ =D g ϵ \angle (G). Thus we get

Proposition Let ^G UG by conjugation Their Og g ⁰ ⁰ g e 2cg

Let's get back to eq. 1 for the conjugation

action. If G is finite, then (since X=G here)
\n
$$
|G| = \sum_{i=1}^{n} |O_{g_i}|
$$

\n $j_{i=1}^{G}$
\n $g_i \in G$

But all those $g \cdot \in G$ which are in $Z(G)$, contribute only 1 element, g, itself, so we can take 12cal many elements out to get

$$
|G| = |Z(G_1)| + \sum_{j=1}^{R} |O_{g_j}|
$$
 —
 $g_j \notin Z(G)$

Recall from the Orbit-Stabilizer theorem that if $|G_1| < \infty$ \Rightarrow $|G| = |O_1| |\Im$ \Rightarrow $|G_2|$ S_{0} from $\circled{2}$, $|G| = |O_{g}| |G(g)| = |O_{g}| = \frac{|G|}{|G(g)|}$ $1c(d)$

Thus, using this in equation 3 we get

$$
|G| = |Z(G)| + \sum_{g \notin Z(G)} \frac{|G|}{|C(g)|}
$$

This is known as the class equation An extra or -dinary thing about this is that even though we started $w/$ the conjugation action but the class equation holds for any finitegroup ^G - ective of any action.

This is the power of group actions! Even though we stant w a particular action, suited to our needs, the end result holds for any group and we get a very nice general result.

o __________ x ________ x _______ x ________ o